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Abstract 

Background: Hepatotoxicity accounts for a substantial number of drugs withdrawn from the 

market. Traditional animal models used to detect hepatotoxicity are expensive and time 

consuming. Alternative in vitro methods, especially cell-based High-Throughput Screening 

(HTS) studies, have provided the research community with a large amount of data from toxicity 

assays. Among the various assays used to screen potential toxicants is the Antioxidant Response 

Element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the 

potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 

program.  

Objective: The ARE-bla computational model and HTS data from a big data source (PubChem) 

was used to profile environmental and pharmaceutical compounds with hepatotoxic data.   

Methods: Quantitative Structure-Activity Relationship models were developed based on ARE-

bla data. The models predicted the potential oxidative stress response for known liver toxicants 

when there was no ARE-bla data available. Liver toxicants were used as probe compounds to 

search PubChem Bioassay and generate a response profile, which contained thousands of 

bioassays (> 10 million data points). By ranking the In Vitro-In Vivo Correlations (IVIVC), the 

most relevant bioassay(s) related to hepatotoxicity were identified.  

Results: The liver toxicants profile contained the ARE-bla and relevant PubChem assays. 

Potential toxicophores for well-known toxicants were created by identifying chemical features 

that existed only in compounds with high IVIVC. 

Conclusion: Profiling the chemical IVIVCs created an opportunity to fully explore the source-

to-outcome continuum of modern experimental toxicology using cheminformatics approaches 

and big data sources.
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Introduction 

Traditional animal models used to evaluate hepatotoxicity are expensive and time 

consuming (Hartung 2009).  In vitro assays are used as an alternative to better understand 

hepatotoxicity (Adler et al. 2011; Zhu et al. 2014a).  However, endeavors to correlate in vitro and 

in vivo hepatotoxicity (Moeller 2010) have not successfully replaced in vivo hepatotoxicity 

models (Ekins 2014; MacDonald and Robertson 2009).   

There is an unmet need to develop predictive assays for hepatotoxicity (Chen et al. 2014).  

As an alternative, High-Throughput Screening (HTS) approaches are used to screen large 

chemical libraries (> 50,000 compounds) to elucidate toxic mechanisms and prioritize candidates 

for further animal tests (Zhu et al. 2014b).  This led to the rapid generation of bioassay data.  

PubChem, the leading public bioassay data repository, contains > 50 million compounds and > 

700,000 assays (Wang et al. 2014).  This amount of “big data” is difficult to process and analyze 

using standard data processing tools.   

Another issue with using HTS for toxicological studies is that it tests compounds at one 

concentration, which may not reveal its toxic effects.  This was addressed by the US Tox21 inter-

agency collaboration (Attene-Ramos et al. 2013; Collins et al. 2008; Committee on Toxicity 

Testing and Assessment of Environmental Agents 2007; Dix et al. 2007).  Based on their 

guidelines, the National Institutes of Health Chemical Genomics Center (NCGC), now part of 

the National Center for Advancing Translational Sciences (NCATS), developed Quantitative 

High-Throughput Screening (qHTS) (Inglese et al. 2006).  A qHTS experiment tests > 100,000 

compounds at 15 different concentrations in triplicate within a week (Attene-Ramos et al. 2013).  

This approach is more rational than single-dose HTS, because it simulates dose-dependent 
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animal toxicity effects (Eaton and Gilbert 2010).  These results are available online 

(http://www.ncbi.nlm.nih.gov/pcassay?term=tox21, accessed January 19, 2015).   

The Antioxidant Response Element (ARE) pathway plays a major role in regulating and 

alleviating oxidative stress (Ma 2013), which after long-term exposure causes many 

pathophysiological conditions, including cancers and hepatotoxicity (Hybertson et al. 2011; 

Shuhendler et al. 2014).  Briefly, the ARE pathway is regulated by Kelch-like ECH-associating 

protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2).  Keap1 contains cysteine 

residues that interact with reactive oxygen species (ROS) and electrophilic fragments that can 

trigger the dissociation of the Keap1-Nrf2 complex (Zhang and Hannink 2003).  Then, Nrf2 

translocates into the nucleus (Kensler et al. 2007), binds to the ARE (Itoh et al. 1997), and 

regulates the transcription of the antioxidative enzymes (Venugopal and Jaiswal 1998).  

Hindering transcription can lead to the accumulation of ROS, oxidative stress, and liver toxicity 

(Shuhendler et al. 2014).  The qHTS ARE beta lactamase reporter gene assay (ARE-bla) can 

detect compounds that activate the ARE pathway and induce oxidative stress (Attene-Ramos et 

al. 2013; Shukla et al. 2012; Simmons et al. 2011).  However, this assay alone is not sufficient 

for accessing animal toxicity.  The correlations between the ARE pathway and animal toxicity 

(i.e., hepatotoxicity) are not well understood. 

Even with all the data from HTS and/or qHTS studies, the relationship between in vitro 

and in vivo toxicity is still unclear (Low et al. 2011; O’Brien et al. 2006).  In this study, this 

challenge was addressed by developing chemical in vitro-in vivo correlations (IVIVC) between 

ARE pathway activation and hepatotoxicity (i.e., liver damage).  An in-house automated 

profiling tool and cheminformatics approaches used qHTS ARE-bla and liver toxicity data to 

retrieve relevant assays, from PubChem, and revealed liver toxicity targets.  Analyzing chemical 
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fragments of liver toxicants revealed potential toxicophores (toxic chemical features) with clear 

IVIVC for a subset of compounds.  Our study suggests that the use of assays as an alternative 

model for toxicity is feasible based on the chemical IVIVC identified from a big data source.  

Methods 

Databases.  qHTS ARE-bla Dataset.  The initial concentration-response profiles for the Tox21 

10K collection tested in the qHTS ARE-bla tests were conducted at the NCATS (Attene-Ramos 

et al. 2013; Shukla et al. 2012).  The Tox21 10K chemical library 

(http://www.epa.gov/ncct/dsstox/sdf_tox21s.html, accessed October 2, 2012) consists of 

compounds procured from commercial sources by the Environmental Protection Agency (EPA), 

National Toxicology Program (NTP), and NCGC (Huang et al. 2011), for a total of ~10,500 

plated compound solutions consisting of 8,311 unique chemical substances including pesticides, 

industrial, food-use, and drugs.  The qHTS ARE-bla datasets can also be downloaded from 

PubChem using Bioassay Accession Identifiers (AID) 743219 and 651741.  PubChem is a public 

repository for chemical structures and their biological properties (Wang et al. 2014).  Bioactivity 

data in PubChem are contributed by hundreds of institutes, research laboratories, and specifically 

those screening centers under the NIH Molecular Libraries Program (MLP) and the Tox21 

program.  Descriptions of the individual datasets are listed in Table 1. 

The concentration-responses were normalized, range-scaled to [0, 100], and converted 

into curve fingerprints (Sedykh et al. 2011) using an in-house program.  The source code can be 

downloaded from GitHub (https://github.com/sedykh/curvep).  Each curve fingerprint was 

summed into one value termed “CurveP.”  CurveP represents the overall signal of the compound 

from its qHTS concentration-response curve that was noise filtered (e.g., CurveP = 0 means no 

significant signals observed).  Three criteria were used to classify each compound with regard to 
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activity: 1) CurveP, 2) maximum concentration-response, and 3) number of concentration-

responses ≥ 20.  The latter two describe the consistency in the concentration-responses.  The 

scheme is detailed in Table 2.  For example, a compound was classified as active if CurveP was 

> 0 and more than one concentration-response ≥ 20.  Lastly, since all compounds were tested 

multiple times and all data were available, activities of each compound were averaged before 

classification. 

In Vivo Hepatotoxicity Dataset.  A liver damage dataset compiled by the Food and Drug 

Administration (FDA) Center for Drug Evaluation and Research (Zhu and Kruhlak 2014) and 

Multicase Inc., contained 1,314 compounds (661 toxic and 653 non-toxic).   

Chemical Structure Curation.  The structures of all compounds used in this study were curated 

to remove errors and standardized to a uniform representation.  Konstanz Information Miner 

(KNIME) version 2.9.2 matched all compound names and PubChem Compound Accession 

Identifiers (CID) with its appropriate Simplified Molecular-Input Line-Entry System (SMILES) 

from PubChem.  The in-house descriptor generators could not process large molecules 

(molecular weight > 2000 g/mol) and compounds without chemical structures.  These 

compounds were removed.  ChemAxon Standardizer and Structure Checker version 6.2.2 and 

CASE Ultra version 1.5.0.1 curated, standardized, and converted all the chemical structures into 

2-D SMILES.  Stereoisomers were considered as one compound.  Metalorganics were removed 

and all salts were neutralized, because the descriptor generator cannot process them.  Mixtures 

were manually evaluated and the major component was kept.   

Measures of Quality and Reliability.  To systematically evaluate the quality and  reliability of 

the Quantitative Structure-Activity Relationship (QSAR) models and IVIVCs developed in this 

study, we calculated the sensitivity and specificity of each assay relative to in vivo animal 
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toxicity data, and derived the correct classification rate (CCR) where CCR = [(sensitivity + 

specificity) / 2] × 100 (Daniel 2009; Kim et al. 2014).  In addition, we calculated  the likelihood 

parameter (L) as an indication of the likelihood that active responses in a bioassay correlated 

with in vivo toxicity outcomes, where L = sensitivity × [(false positives + true positives)/ (false 

positives + 1)] (Zhang et al. 2014).  The statistical significance of the IVIVCs were determined 

using Chi square (Χ2) tests comparing the in vitro assay predictions to expectations based on in 

vivo toxicity data, under the null hypothesis of no association between the two data sources 

(Daniel 2009). 

Workflow for Profiling the Mechanisms of Liver Toxicants.  The chemical IVIVC between 

qHTS ARE-bla perturbation or relevant PubChem assays and liver damage was evaluated.  The 

profiling workflow has three major stages (Figure 1): 1) automated biological response profiling, 

2) QSAR modeling of qHTS ARE-bla activation, 3) chemical IVIVC evaluation.   

Automated Biological Response Profiling.  The biological response profile was constructed 

from PubChem Bioassay data (http://www.ncbi.nlm.nih.gov/pcassay/, accessed February 27, 

2014) with an in-house automated profiling tool (Zhang et al. 2014), which resulted in two 

profile groups.  One group was related to qHTS ARE-bla activation and the second was related 

to liver damage.  The correlations between all bioassays (> 2,000) and ARE-bla and liver 

damage were calculated (sensitivity, specificity, CCR, and L).  Only bioassays that fit the 

following criteria were considered for the final biological response profile: 1) appeared in both 

profile groups; 2) contained > 10 active responses that matched the inputted data; 3) correlation 

was better than random (CCR > 0.5 and L ≥ 1); and 4) is an in vitro assay.  Lastly, bioassays 

were selected for further analysis if there was literature evidence that showed these assays were 

used to study oxidative stress and/or liver damage.   
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 It was hypothesized that compounds that were active in multiple assays, but were not pan 

assay interference compounds (Baell and Holloway 2010) (i.e., compounds that show false 

positive results in many assays due to assay technology specific artifacts), were more likely to be 

toxic compounds.  Using the responses from the selected assays, the Rate of Actives (RA) was 

calculated to represent all the bioassay responses for each compound: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  𝑜𝑜𝑜𝑜  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = !
!!!

,    (1) 

where A is the number of active responses and I is the number of inactive responses for a 

compound.  The RA parameter was designed for this big data research since missing data can 

occur in the response profiles for target compounds.  For example, if four assays were identified 

and a compound tested in all four assays was active in one assay, and negative in the other three 

assays, it would have a RA = 0.25.  However, if another compound was active in one assay, 

negative in two assays, and has no data or an inconclusive result for the fourth assay, it would 

have a RA = 0.33.  Thus, potential bias due to missing assay data was reduced.  An arbitrary RA 

threshold was used to distinguish toxic from non-toxic compounds (RA > 0.25 as toxic, RA ≤ 

0.25 as non-toxic).  The RA values were used to determine the IVIVC between liver damage and 

the assays.  To measure the quality and reliability, each RA value was classified as true positive 

(TP), true negative (TN), false positive (FP), or false negative (FN) for a Χ2 test (α = 0.05).   

QSAR Modeling of the ARE-bla Pathway.  The qHTS ARE-bla datasets were used to develop 

qHTS ARE-bla combinatorial QSAR models.  2-D chemical descriptors for each compound 

were generated using Molecular Operating Environment (MOE) version 2011.10 and Dragon 6 

version 6.0.  All descriptors were normalized and range scaled to [0, 1].  186 MOE and 2,629 

Dragon descriptors were used to model qHTS ARE-bla activation. 
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The qHTS ARE-bla dataset was down-sampled using a chemical similarity search 

approach to balance the ratio of active and inactive compounds selected for modeling (Sedykh et 

al. 2011; Willett et al. 1998).  This prevents the development of biased models.  Active and 

inactive compounds from the Tox21 phase II dataset were selected to create the modeling set, 

since it was much larger than the Tox21 phase I dataset (Golbraikh et al. 2003; Tice et al. 2013).  

Using all 186 MOE descriptors, a principal component analysis was performed.  Individual 

models were developed using the combination of MOE or Dragon descriptors and with either 

Random Forest (RF) (Breiman 2001), Support Vector Machine (SVM) (Vapnik 2000), or k-

Nearest Neighbor (k-NN) (Zheng and Tropsha 2000) algorithms.  Six different combinations of 

descriptors and algorithms were used for modeling: MOE-RF, MOE-SVM, MOE-k-NN, Dragon-

RF, Dragon-SVM, and Dragon-k-NN.  Modeling results were averaged into a consensus model.  

Models were validated using 5-fold external cross-validation (80/20% split).  Additional details 

about QSAR modeling and validation approaches can be found elsewhere (Golbraikh et al. 2003; 

Kim et al. 2014; Tropsha and Golbraikh 2007). 

Since prediction values ranged from [0,1], two Consensus Prediction Thresholds (CPT) 

(Kim et al. 2014) were defined to classify compounds as active or inactive: CPT-1(≥0.5 as 

actives and < 0.5 as inactives) and CPT-2 (≥ 0.8 as actives and ≤ 0.3 as inactives).  Predictions 

between CPT-2 thresholds (< 0.8 and > 0.3) were inconclusives.  An Applicability Domain (AD) 

determined whether the external compounds were structurally dissimilar to the modeling set 

compounds or not (Tropsha and Golbraikh 2007).  Predictions of compounds outside the AD 

were considered unreliable.  Therefore, the coverage (fraction of compounds that are within the 

AD) was calculated when applying AD to the predictions. 
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Chemical IVIVC Evaluation.  Potential toxicophores, chemical fragments with significant 

IVIVC, were identified by inputting compounds active in the qHTS ARE-bla and liver damage 

datasets into CASE Ultra and ChemoTyper version 1.0.  The substructure search tool in KNIME 

searched the qHTS ARE-bla and liver damage datasets for compounds containing the potential 

toxicophores.  The qHTS ARE-bla combinatorial QSAR models predicted compounds from the 

liver damage dataset that have not been tested in the qHTS ARE-bla assay.  The predictions were 

classified as TP, TN, FP, or FN to evaluate the chemical IVIVC for each subset of compounds 

with the potential toxicophores.  The chemical IVIVC results were indicated using sensitivity, 

specificity, CCR, Χ2 (α = 0.05) (Daniel 2009). 

Results  

Overview of qHTS ARE-bla Dataset.  The original qHTS ARE-bla data contained two datasets 

(Tox21 phase I and phase II).  After combining, curating, and standardizing the chemical 

structures and activities, 6,767 unique compounds (919 actives, 748 potential actives, 760 

inconclusives, and 4,340 inactives) remained.  Potential active and inconclusive compounds were 

excluded from further analyses. The remaining Phase I dataset consists of 1,474 unique 

compounds (341 actives and 1,133 inactives) and Phase II dataset consists of 5,134 unique 

compounds (878 actives and 4,256 inactives). 

qHTS ARE-bla Combinatorial QSAR Models.  Six individual and one consensus qHTS ARE-

bla QSAR models were developed for the modeling set (7 models total).  The down-sampled 

modeling set contained 1,550 (750 actives and 800 inactives) unique compounds.  Compounds 

left out of the modeling sets were placed into external validation sets.  The chemical space, in a 

3-D plot, covered by the modeling set versus its left out compounds and the liver damage dataset 

are shown in Figure 2A and 2B, respectively.  External validation sets I [from Tox21 phase I] 
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and II [for Tox21 phase II] contained 1,148 (175 active and 973 inactive) and 3,584 (128 active 

and 3,456 inactive) compounds, respectively.  The predictions of these QSAR models for new 

compounds represent the potential effect of these chemicals (either activation or no effect) in the 

qHTS ARE-bla.   

The performance of the qHTS ARE-bla combinatorial QSAR consensus model in the 5-

fold cross validation and against the external validation sets, with an AD for CPTs 1 and 2 are 

shown in Table 3. The consensus modeling set showed good performance in the 5-fold cross 

validation (sensitivity = 75-76%, specificity = 71-92%, and CCR = 74-84%).  The performance 

of the consensus model against external validation sets I and II without AD was satisfactory 

(sensitivity = 68-93%, specificity = 72-99%, and CCR = 77-92%).  Using an AD, the external 

validation sets still resulted in acceptable performance (sensitivity = 62-90%, specificity = 78-

99%, CCR = 79-93%, coverage = 34-77%).  The individual models showed acceptable 

performance in the 5-fold cross validation (sensitivity = 68-77%, specificity = 58-73%, and CCR 

= 67-73%) (Supplemental Material, Figure S1).  Overall, the consensus prediction results are 

comparable to the results of the best individual model which is Dragon-RF (sensitivity = 74%, 

specificity = 73%, CCR = 73%) (Supplemental Material, Figure S1).   

Liver Toxicants Profile and Its IVIVCs.  The goal of the automatic data mining and extraction 

tool used in this study is to reduce the big data pool to a much smaller size, which can be curated 

manually by experts.  The profiling tool identified 2,978 assays (available upon request from the 

corresponding author) relevant to qHTS ARE-bla activation and/or liver damage, 958 of which 

existed in both profiles.  Automated data extraction identified 20 PubChem assays based on the 

first three criteria for assay selection (appeared in both profile groups, contained > 10 active 

responses that matched the inputted data, CCR > 0.5 and L ≥ 1).  The assays are listed in 
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Supplemental Material, Table S1.  However, automatic methods cannot detect the detailed 

characteristics of an assay and distinguish the difference between in vitro and in vivo assays.  

The 20 assays identified by the initial automated screening procedure were manually reviewed to 

confirm that they met the in vitro selection criterion.  For example, AID 1199, was identified as 

an in vivo assay.  It did not fit the “in vitro assay” criterion and was removed.  A total of eight 

non-in vitro assays were removed in this step and there were 12 in vitro assays left. Through the 

literature search, there is no information to support the relevance of six assays (AIDs 121, 123, 

589, 590, 2330, and 720532) to either liver damage or oxidative stress.  Six assays remained and 

two of them had redundant activities.  For example, AIDs 686978 and 686979 refer to the qHTS 

human tyrosyl-DNA phosphodiesterase 1 (TDP1) assay tested under two different conditions, 

and the activities for most of the compounds were the same.  AID 686978 was selected since the 

condition was performed in absence of the topoisomerase I poison camptothecin, which was 

more suitable for this study.  AIDs 743065 and743067 refer to the qHTS assay to identify small 

molecule antagonists of the thyroid receptor (TR) signaling pathway.  AID 743067 was selected 

because it was a summary assay (included both primary and cell viability counter screen results).  

After removing the redundant assays and evaluating the remaining assays by their mechanisms, 

four PubChem assays remained: AID 686978 qHTS for inhibitors of TDP1, AID 743067 qHTS 

assay to identify small molecule antagonists of the TR signaling pathway, AID 743140 qHTS 

assay to identify small molecule agonists of the peroxisome proliferator-activated receptor 

gamma (PPARg) signaling pathway, and AID 743202 which was the qHTS ARE-bla assay used 

in the QSAR models above.  These assays are relevant to ARE perturbation and liver damage 

according to literature (Fielden et al. 2007; Königer et al. 2014; Malik and Hodgson 2002; 

Mantena et al. 2008) and were combined to create the biological response profile (Figure 3A). 
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Although these top four assays met the selection criteria, the individual assay predictions 

were not significantly associated with in vivo liver damage (Χ2 p-values for the independence of 

assays and in vivo liver damage = 0.24-0.59).  However, combining these four assays and 

defining toxicity as RA > 0.25 resulted in a statistically significant association (Χ2 p-value = 

2.92×10-4).  The biological profile shows the responses for 953 compounds from the liver 

damage dataset against the top four assays and their combined responses, using threshold RA > 

0.25 (Figure 3A).  361 liver damage compounds are not shown, because there was no bioassay 

data available for them.   

The qHTS ARE-bla dataset used in this study contains > 6,000 compounds, but does not 

cover all the compounds in the liver damage dataset.  Therefore, qHTS ARE-bla combinatorial 

QSAR model was used to predict the activity of compounds that were not tested in the qHTS 

ARE-bla study.  It is important to mention that the liver damage dataset consists of mostly drug-

like compounds that were outside of the AD of the QSAR models.  In previous studies, QSAR 

models normally cannot predict the compounds out of AD as accurately as the compounds within 

AD (Tropsha and Golbraikh 2007).  As shown in the principal component analysis (Figure 2B) 

and according to the AD analysis, most of the liver damage dataset compounds either share the 

same chemical space as the actives in the modeling set or are out of AD, meaning they are likely 

to be predicted as active by the QSAR models.  This resulted in the increase of false positives in 

the later IVIVC analysis, which provides a hint that extra experimental ARE data are still needed 

for the drug-like compounds of interest in the future study. 

Using CASE Ultra and ChemoTyper, two subsets of compounds were identified.  Subsets 

contained a chemical fragment that showed a statistically significant IVIVC between ARE-bla 

activation and liver damage in the Χ2 test with p-values of 0.01 and are referred to as potential 
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toxicophores A and B (Figure 3B), respectively.  There are more true positives than false 

positives.  Therefore, the active responses in this assay are potential signals of liver damage for 

the compounds that contain the potential toxicophores.  

Furthermore, the qHTS ARE-bla combinatorial QSAR models were used to predict liver 

damage dataset compounds without experimental qHTS ARE-bla perturbation results.  Figure 

3B shows the IVIVC (TP, TN, FP, and FN) between the qHTS ARE-bla activation and liver 

damage, for compounds with potential toxicophores A and B, using experimental ARE-bla data 

and QSAR predictions.  When using only QSAR results, the IVIVC was not statistically 

significant (Χ2 p-value = 0.41) for both potential toxicophores.  This is due to structural 

differences between the drugs in the liver damage dataset and the compounds in the Tox21 

dataset, used to develop the qHTS ARE-bla combinatorial QSAR model, as described above.  

The result suggests the limitation of applying QSAR models to predict new compounds that are 

out of AD. 

Discussion 

ARE pathway perturbation is an important mechanism for alleviating and preventing 

oxidative stress (Ma 2013).  In this study, qHTS ARE-bla data and the resulting QSAR models 

were used to study the relationship between oxidative stress and liver damage.  When qHTS 

ARE-bla data for a compound was not available, the combinatorial QSAR models were used to 

fill-in the empty entries.  This technique can be adapted to populate response profiles for other 

assays.   

The workflow created in this study used data from PubChem, a publicly available big 

data source, to create and populate a bioassay response profile and revealed the relationship 

between oxidative stress and liver damage (Figure 1).  Furthermore, the workflow in this study 
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can be adapted to develop adverse outcome pathways (AOP) (Ankley et al. 2010).  Our study 

identified a combination of molecular initiating events (MIE) (Allen et al. 2014) between some 

drugs and biomolecules that could cause the adverse outcome resulting in liver damage.  The 

combination of drugs or compounds (i.e., lipids) carrying fragments susceptible to free radical 

oxidation and fragments causing the inhibition of signaling pathways meant to alleviate or 

prevent oxidative stress can all lead to liver damage.  These MIEs and their adverse outcome(s) 

are described in the following paragraphs and are illustrated in Figure 4.   

The assay AID 686978 identifies inhibitors of human TDP1.  TDP1 is an enzyme that 

repairs single-stranded DNA breaks covalently linked to topoisomerase I.  It is known that 

mutations in TDP1 impair the ability of a cell to repair DNA damaged by oxidation or drugs 

(Ben Hassine and Arcangioli 2009).  When DNA is damaged and TDP1 is inhibited, 

topoisomerase I stays covalently linked to the DNA during replication and the cell dies (Pouliot 

et al. 1999).  Since the ARE pathway contains a considerable number of detoxifying genes, it 

acts as the first line of defense to prevent DNA damage from oxidation or drugs (Kwak et al. 

2003). 

For AID 743067, active compounds in this assay act as TR antagonist and can disrupt 

metabolic homeostasis by inhibiting the binding of the thyroid hormone (Jameson and Weetman 

2012).  The liver plays a major role in thyroid hormone metabolism and liver damage is often 

associated with thyroid diseases (Huang and Liaw 1995).  Furthermore, the liver metabolizes 

lipids and thyroid hormones regulate hepatic lipid homeostasis (Malik and Hodgson 2002).  

Lipids autoxidize in the presence of molecular oxygen, a process known as lipid peroxidation 

(Porter et al. 1995), which forms free radicals and ROS.  Normally the ARE will inactivate ROS 
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(Shukla et al. 2012).  Failure to terminate ROS results in oxidative stress (Sies 1997), especially 

when a TR antagonist has disrupted liver lipid metabolism. 

The assay AID 743140 identifies PPARg agonists that activate the PPAR response 

elements and in this specific case it regulates adipogenesis (Tontonoz et al. 1994).  Adipose 

tissue, especially visceral adipose tissue, releases fatty acids directly into the liver via the hepatic 

portal vein (Lafontan and Girard 2008).  Fatty acids are susceptible to lipid peroxidation.  

Disrupting PPARg and adipogenesis could put the liver at risk for oxidative stress when fatty 

acids are in excess.   

The AOP concept was presented as a logical sequence of biological responses that is 

useful for understanding complex toxicity phenomena (Allen et al. 2014; Ankley et al. 2010).  

Based on the AOP concept, Allen et al. discussed a unified MIE definition for the AOP 

framework for risk assessment purposes (Allen et al. 2014).  This kind of research classifies 

compounds by mode of action using in vitro methods.  Therefore, the chemical in vitro-in vivo 

relationships identified in this study can also be integrated into the AOP framework of liver 

damage.  Potential toxicophore A is an electrophilic fragment highly susceptible to free radical 

oxidation, due to its allylic hydrogen (Porter et al. 1995).  It represents a key chemical property 

of potential toxicants in an AOP framework.  For example, oxyphenbutazone (CID 4641) is 

known for causing liver damage (Gaisford 1962).  It contains potential toxicophore A and is 

active in AIDs 686978 and 743202 as a TDP1 inhibitor and ARE agonist, respectively.  The 

bioassay results can be viewed as the macro-molecular interactions and the RA value can be 

considered as a specific cellular response pathway perturbation score (i.e., ARE signaling 

pathway perturbation and TDP1 inhibition) of AOP for this compound.  The molecular 

mechanism by which oxyphenbutazone causes liver damage is still not clear (Gaisford 1962; Tai 
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2012).  However, it is well established that it is a lipid soluble drug metabolized by liver 

microsomal enzymes and requires molecular oxygen to metabolize (Davies and Thorgeirsson 

1971).  Similarly, potential toxicophore B is known as N-methylformamide, a well-known liver 

toxicant susceptible to free radical oxidation by C-H abstraction from alkyl group(s) adjacent to 

the nitrogen atom (Borduas et al. 2015).  This reaction produces methyl isocyanate, which is 

highly toxic (Varma 1987).  For example, 5-fluorouracil (CID 3385) contains toxicophore B.  5-

fluorouracil was shown to be active in both AIDs 686978 and 743067, TDP1 inhibitor and TR 

antagonist, respectively.  If administered orally, 5-fluorouracil is metabolically degraded 

predominantly in the liver by dihydropyrimidine dehydrogenase (DPD) (Omura 2003).  Patients 

that lack DPD are highly likely to experience liver damage (Chabner et al. 2011).  In our current 

study, it is noticeable that the four major components of an AOP (as defined by Ankley et al. 

2010) are included: chemical properties of toxicants, macro-molecular interactions, cellular 

responses, and organ responses.  Our future study will focus on the AOP framework of liver 

damage by differentiating the hepatotoxicity mechanisms of liver damage (e.g., acute hepatic 

failure, cytolytic hepatitis, hepatic necrosis) (Zhu and Kruhlak 2014). 

Our findings suggest that the four assays (686978, 743067, 743140, and 743202) could 

be used to screen for compounds that cause oxidative stress and induce liver damage.  When 

specific chemical features (e.g., potential toxicophores A and B) are present, the active responses 

obtained from these bioassays suggest potential hepatotoxicity.  Although the four assays have 

covered several important mechanisms of oxidative stress, the negative results from all four 

assays would not be sufficient to indicate that a chemical is not hepatotoxic.  Future work on this 

project includes the validation of these assays for their predictivity of liver damage, which will 

be used to optimize predictive liver toxicity models. 
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Conclusions 

We developed a workflow that identified potential assays from a public big data source 

for the evaluation of liver damage caused by oxidative stress.  Although using four assays will 

not be enough to cover all the relevant toxicity mechanisms of liver damage, this work clearly 

indicates the benefits of searching for useful toxicity data in the public big data domain for the 

compounds of interest.  The increase in false positives in the IVIVC analysis indicates that the 

bioassay data is still needed for the compounds out of AD (e.g., drug-like compounds).  This 

issue could be resolved by rational design of the HTS chemical library that covers all the 

chemical space.  New compounds containing the potential toxicophores can be tested using these 

four assays to assess the potential liver damage caused by oxidative stress prior to animal testing.  

The workflow developed in this study can be easily adapted to study the relationship 

between any bioassay and other in vivo exposure data to evaluate complex in vitro-in vivo 

relationships and reveal toxicity mechanisms.  Future directions of in silico modeling of animal 

toxicity induced by drugs and oxidative stress could include pharmacology studies.  
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Table 1.  Comprehensive toxicity databases compiled from public sources 

Names Types Description Number of 
compounds 

Tox21 phase I (NTP and 
EPA) ARE-bla 

(https://pubchem.ncbi.nl
m.nih.gov/assay/assay.c

gi?aid=651741, 
accessed August 29, 

2015) 

In vitro 
Compounds characterized in traditional 

toxicology tests and/or known to be 
harmful to humans and the environment 

2,617 

Tox21 phase II 10K 
ARE-bla 

(http://www.epa.gov/nc
ct/dsstox/sdf_tox21s.ht
ml, accessed October 2, 

2012) 

In vitro 

Diverse compounds (pesticides, 
industrial, food-use, drugs, etc.) with 

chemical features that are of interest to 
toxicologists 

8,311 

FDA liver damage (Zhu 
and Kruhlak 2014) 

In vivo Drugs known to cause liver damage (e.g., 
necrosis, lesions, traumatic liver injury) 

1,314 

PubChem Bioassay 
(http://www.ncbi.nlm.ni

h.gov/pcassay/, 
accessed February 27, 

2014) 

In vitro 
& in 
vivo 

Compounds that have been validated and 
screened in different bioassays 

48M+ 
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Table 2.  Definition of compound activity categories from concentration-response curves and the 

CurveP algorithm for the qHTS ARE-bla datasets 

Category Activity CurveP Maximum 
response 

Number of 
responses > 

20 units 
Activea 1 > 0 ≥ 20 > 1 

Potential 
activeb 0.75 > 0 ≥ 20 = 1 

Inconclusivec 0.25 = 0 < 20 = 0 
Inactived 0 = 0 < 10 = 0 

aStrong ARE-bla activation signals observed; bWeak ARE-bla activation signal observed; 
cInconsistent ARE-bla activation signal(s) observed; dNegligible or no ARE-bla activation 
signals observed. 
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Table 3.  qHTS ARE-bla combinatorial QSAR consensus model performance in 5-fold cross 

validation and against external validation sets, with and without Applicability Domain (AD), 

Consensus Prediction Thresholds (CPT) 1-2 

Statistics 

5-fold cross 
validation 
(80/20% 

split) 

Validation 
set I 

Validation set 
I + AD 

Validation set 
II 

Validation II + 
AD 

n (active/inactive) 750/800 175/973 132/757 128/3,456 59/2,566 

CPT-1a 

Sensc (%) 76 76 73 83 80 
Specd (%) 71 83 85 72 78 
CCRe (%) 74 80 79 77 79 

Coveragef (%) 100 100 77 100 73 

CPT-2b 

Sens. (%) 75 68 62 93 90 
Spec. (%) 92 99 99 92 95 
CCR (%) 84 84 80 92 93 

Coverage (%) 35 40 34 45 37 
aCPT-1:QSAR prediction ≥0.5 as actives and QSAR prediction < 0.5 as inactives; bCPT-2: 
QSAR prediction ≥ 0.8 as actives and QSAR prediction ≤ 0.3 as inactives; cSens, sensitivity - 
percentage of active or toxic compounds predicted correctly; dSpec, specificity - percentage of 
inactive or non-toxic compounds predicted correctly; eCCR, correct classification rate; fCoverage 
- fraction of compounds that are within the applicability domain. 
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Figure Legends 

Figure 1.  The workflow for profiling liver toxicants consists of three major stages: (1) 

automated biological response profiling, (2) QSAR modeling of qHTS ARE-bla activation, (3) 

chemical IVIVC evaluation.  In the columns [Liver Damage, 1, 2, 3, “…”, n, ARE-bla], actives 

are red color and “1;” inactives are blue and “0;” and inconclusive or untested are white and 

empty. 

Figure 2.  Chemical space plot of (A) the modeling set (actives = red, inactives = purple) vs. its 

left out compounds (yellow) and (B) the modeling set vs the FDA liver damage compounds 

(green) using the top three principal components generated using 186 MOE 2-D descriptors.  

Figure 3.  The IVIVC between selected assays and liver damage was evaluated by classifying 

responses as true positive (TP), true negative (TN), false positive (FP), or false negative (FN) for 

a Χ2 (α = 0.05) or CCR test.  (A) The biological response profile (red = active or toxic, blue = 

inactive or non-toxic, yellow = inconclusive or untested) of liver damage compounds represented 

in the heat map using the top four assays (AIDs 686978, 743067, 743140, and 743202).  

Individual assays show weak IVIVC, but the combined responses of the assays using threshold 

RA > 0.25 as active resulted in a statistically significant IVIVC (Χ2 p-value = 2.92×10-4).  (B)  

The IVIVC between experimental qHTS ARE-bla activation and liver damage and the QSAR 

predictions for each liver damage compound, for subsets of overlapping compounds with 

potential toxicophores A (left) and B (right). 

Figure 4.  The potential liver toxicity mechanism of the compounds, like oxyphenbutazone (CID 

4641) and 5-fluorouracil (CID 3385), that contain either of the proposed toxicophores A or B can 

generate reactive oxygen species.  These types of stimuli activate the Antioxidant Response 

Element signaling pathway (ARE) (AID 743202) and peroxisome proliferator-activated receptor 
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gamma signaling pathway (PPARg) (AID 743140), inhibit human tyrosyl-DNA 

phosphodiesterase 1 signaling pathway (TDP1) (686978), or disrupt the thyroid receptor 

signaling pathway (TR) (AID 743067).  
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